Indian Statistical Institute

Semestral Examination 2018-2019

B.Math Third Year Complex Analysis November 14, 2018 Instructor : Jaydeb Sarkar Time : 3 Hours Maximum Marks : 100

Notation: (i) $B_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$. (ii) $Hol(B_r(z_0)) = \{f : B_r(z_0) \rightarrow \mathbb{C} \text{ holomorphic }\}$. (iii) $C_r(z_0) = \{z \in \mathbb{C} : |z - z_0| = r\}$. (iv) $\mathcal{Z}(f) = \text{zero set of } f$. (v) $\epsilon > 0$. (vi) $\mathbb{H} = \text{Upper half plane.}$

- (1) (10 marks) Let $f : \mathbb{C} \to \mathbb{H}$ be a holomorphic function. Prove that f is constant.
- (2) (10 marks) Let γ be a smooth closed curve in \mathbb{C} . Prove that the winding number of γ is identically zero on the unbounded component of $\mathbb{C} \setminus \gamma$.
- (3) (10 marks) Prove that there is no function f that is holomorphic on $\{z \in \mathbb{C} : 0 < |z| < 1\}$, and f' has a simple pole at 0.
- (4) (10 marks) Let $f \in Hol(B_{1+\epsilon}(0)), f(0) = 0, f'(0) = 1$, and suppose that $|f(z)| \le 1$ for all $z \in C_1(0)$. Prove that f(z) = z for all $z \in B_{1+\epsilon}(0)$.
- (5) (15 marks) Let $f \in Hol(B_{1+\epsilon}(0))$, and suppose that |f(z)| < 1 for all $z \in C_1(0)$. Prove that the equation $f(z) = z^3$ has exactly three solutions (counting multiplicities) inside $B_1(0)$.
- (6) (15 marks) Examine the nature of the singularities of the following functions and determine the residues at the singularities:

$$(a) \frac{1}{\sin z}, \qquad (b) \frac{1+z}{z}.$$
 Use part (a) to find $\int_{C_1(0)} \frac{1}{\sin z} dz.$

- (7) (15 marks) Prove that, except for the identity function, a holomorphic self-map of $B_1(0)$ has at most one fixed point.
- (8) (15 marks) Let $f \in B_1(0)$ and $g \in Hol(\{z \in \mathbb{C} : |z| > r\})$ for some r < 1. Suppose that g admits a limit at infinity. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} \frac{b_n}{z^n}$ be the corresponding Taylor and Laurent expansions centered at the origin. Prove that the series

$$\sum_{n=0}^{\infty} a_n b_n,$$

converges absolutely.

(9) (15 marks) Let $f \in Hol(B_1(0) \setminus \{0\})$. If f is one-to-one, then prove that 0 is either a pole or a removable singularity of f.